Can Peripheral Representations Improve Clutter Metrics on Complex Scenes?

نویسندگان

  • Arturo Deza
  • Miguel P. Eckstein
چکیده

Previous studies have proposed image-based clutter measures that correlate with human search times and/or eye movements. However, most models do not take into account the fact that the effects of clutter interact with the foveated nature of the human visual system: visual clutter further from the fovea has an increasing detrimental influence on perception. Here, we introduce a new foveated clutter model to predict the detrimental effects in target search utilizing a forced fixation search task. We use Feature Congestion (Rosenholtz et al.) as our non foveated clutter model, and we stack a peripheral architecture on top of Feature Congestion for our foveated model. We introduce the Peripheral Integration Feature Congestion (PIFC) coefficient, as a fundamental ingredient of our model that modulates clutter as a non-linear gain contingent on eccentricity. We finally show that Foveated Feature Congestion (FFC) clutter scores (r(44) = −0.82 ± 0.04, p < 0.0001) correlate better with target detection (hit rate) than regular Feature Congestion (r(44) = −0.19 ± 0.13, p = 0.0774) in forced fixation search. Thus, our model allows us to enrich clutter perception research by computing fixation specific clutter maps. A toolbox for creating peripheral architectures: Piranhas: Peripheral Architectures for Natural, Hybrid and Artificial Systems will be made available1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective visual attention enables learning and recognition of multiple objects in cluttered scenes

A key problem in learning representations of multiple objects from unlabeled images is that it is a priori impossible to tell which part of the image corresponds to each individual object, and which part is irrelevant clutter. Distinguishing individual objects in a scene would allow unsupervised learning of multiple objects from unlabeled images. There is psychophysical and neurophysiological e...

متن کامل

Cutting through the clutter: searching for targets in evolving complex scenes.

We evaluated the use of visual clutter as a surrogate measure of set size effects in visual search by comparing the effects of subjective clutter (determined by independent raters) and objective clutter (as quantified by edge count and feature congestion) using "evolving" scenes, ones that varied incrementally in clutter while maintaining their semantic continuity. Observers searched for a targ...

متن کامل

Examining high level neural representations of cluttered scenes

Humans and other primates can rapidly categorize objects even when they are embedded in complex visual scenes (Thorpe et al., 1996; Fabre-Thorpe et al., 1998). Studies by Serre et al., 2007 have shown that the ability of humans to detect animals in brief presentations of natural images decreases as the size of the target animal decreases and the amount of clutter increases, and additionally, th...

متن کامل

Effect of Curved Path Monopulse Radar Platform’s Grazing Angle on Height of Floated Targets Detection

Monopulse radarsare one of the most accurate tracking radars used to guide various platforms. Detection and tracking of surface targets with these radars are performed in order to point strike targets. Sea clutter presents challenges for detecting floated targets and in addition to affecting detection height, it can cause errors in monopulse angle finding. In this paper, the airborne monopulse ...

متن کامل

Minimizing Binding Errors Using Learned Conjunctive Features

We have studied some of the design trade-offs governing visual representations based on spatially invariant conjunctive feature detectors, with an emphasis on the susceptibility of such systems to false-positive recognition errors-Malsburg's classical binding problem. We begin by deriving an analytical model that makes explicit how recognition performance is affected by the number of objects th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016